4.5: Laws of Exponents ad Logarithm

Laws of Exponents: Let a and b be positive numbers and let x and y be real numbers. Then,

1. $b^{x} \cdot b^{y}=b^{x+y}$
2. $\frac{b^{x}}{b^{y}}=b^{x-y}$
3. $\left(b^{x}\right)^{y}=b^{x y}$
4. $b^{0}=1$
5. $b^{1}=b$
6. $(a b)^{x}=a^{x} b^{x}$
7. $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$

Laws of Logarithms

If m and n are positive numbers and $b>0, b \neq 1$, then

1. $\underbrace{\log _{b}(m n)}_{\log (\text { a product })}=\underbrace{\log _{b}(m)+\log _{b}(n)}_{\text {sum of } \log s}$
2. $\underbrace{\log _{b}\left(\frac{m}{n}\right)}_{\text {log(a quotient) }}=\underbrace{\log _{b}(m)-\log _{b}(n)}_{\text {difference of } \log s} \quad$ log of a quotient is difference of logs
3. $\log _{b}\left(m^{n}\right)=n \log _{b}(m) \quad \log$ of an exponential is the product of exponent $\times \log$ of base of the exponential
4. $\log _{b}(1)=0$
5. $\log _{b}(b)=1 \quad \log$ of the base is one
6. $\log _{c}(x)=\frac{\log _{b}(x)}{\log _{b}(c)}$

Change of base formula

Fun Facts:

Numbers 1-6 of laws of logarithm are consequences of laws of exponents.

- Show "Law of exponent $1 \Longrightarrow$ Law of Logarithm 1":
(1) $\underbrace{m n=b^{\log _{b}(m n)}}_{\text {By Inverse Property }}$
(2) $\underbrace{m n=\overbrace{b^{\log _{b}(m)}}^{m} b^{\log _{b}(n)}}_{\text {By Inverse Property on Each Factor }}{ }^{n}$
(3) $\underbrace{m n=\overbrace{b^{\log _{b}(m)+\log _{b}(n)}}^{b^{\log _{b}(n)}}}_{\text {By Exponential Property } 1}$
(4) $\mathrm{By}(1)$ and (3): $b^{\log _{b}(m n)}=b^{\log _{b}(m)+\log _{b}(n)}$. That is, $\log _{b}(m n)=\log _{b}(m)+\log _{b}(n)$.
- To combine two or more logs, make sure that the coefficients become exponents inside the log, then use the log of sum and difference law. We combine to solve equations.
- To expand a log, use the law of sum and differences first, and then use the law of exponents and simplify using inverse function property. We expand to evaluate and in future calculus techniques.
- You will see applications of combining or expanding in the future sections.

1. For $a>0, b>0, c>0,\left(81 a^{-4} b^{8} c^{4}\right)^{\frac{1}{4}}=$
(A) $3 b^{2}$
(B) $\frac{b^{2} c}{3 a}$
(C) $\frac{3 b^{2} c}{a}$
(D) $\frac{9 b^{2} c}{a}$
(E) $\frac{b^{2} c}{81 a}$
2. $\sqrt[5]{3} \sqrt[4]{3}=$
(A) 3
(B) $\sqrt[20]{3}$
(C) $\sqrt[20]{3^{4}}$
(D) $\sqrt[20]{3^{5}}$
(E) $\sqrt[20]{3^{9}}$
3. $\ln \left(\sqrt{x^{2}+16}\right)-\ln (\sqrt{x})$ is equivalent to
(A) $\frac{1}{2} \ln \left(\frac{x^{2}+16}{x}\right)$
(B) $\frac{\ln \left(\sqrt{x^{2}+16}\right)}{\ln (\sqrt{x})}$
(C) $\ln \left(\frac{x+4}{\sqrt{x}}\right)$
(D) $\ln (4)$
(E) $\ln \left(\sqrt{x^{2}+16}-\sqrt{x}\right)$
4. When expanded using the laws of logarithms, $\ln \left(\frac{a}{b^{2} \sqrt{c}}\right)=$
(A) $\ln a-2 \ln b-\frac{1}{2} \ln c$
(B) $a-2 b-\frac{1}{2} c$
(C) $\ln \left(a-2 b+\frac{1}{2} c\right)$
(D) $\ln a-2 \ln b+\frac{1}{2} \ln c$
5. Simplify: $\begin{array}{lll}\text { (A) } e^{7 \ln x} & \text { (B) } \ln \left(e^{t^{2}}\right)\end{array}$
6. Simplify the following expressions.
(A) $\frac{2^{y+1} e^{3 x}}{e^{x} 2^{y}}$
(B) $\left(2^{2 x} 3^{3 x} 2^{2 x-1}\right)^{3}$
7. Expand the following expressions.
(A) $\ln \left(\left(e^{3 x} e^{x+1}\right)^{1 / 3}\right)$
(B) $\ln \left(\frac{\sqrt{e^{x}} \sqrt{2^{x}}}{2 e}\right)$
8. Use the laws of logarithms to combine each expression into single logarithm.
(A) $\frac{1}{2} \ln (x)+8 \ln (y)-5 \ln (z)$
(B) $2 \ln (x+3)-\frac{1}{3} \ln \left(x^{2}+x\right)+\ln 8$
(C) $8 \ln (x+6)-\frac{1}{2} \ln (x+8)+3 \ln (x)$.
9. Use the laws of logarithms to expand and simplify the expression. $\log \left(x\left(x^{5}+5\right)^{-1 / 2}\right)=$
10. Factor and simplify the following function as much as possible. Then find the zeros and the domain of the function.

$$
f(x)=30(x+3)^{2}(x-2)^{-\frac{2}{3}}-6(x+3)(x-2)^{\frac{1}{3}}
$$

1. https://youtu.be/n6Nvm8j6P6A
2. https://youtu.be/FPVvZwZnuPw
