4.5: Laws of Exponents ad Logarithm

Laws of Exponents: Let a and b be positive numbers and let x and y be real numbers. Then, 1. $b^x \cdot b^y = b^{x+y}$ 5. $b^1 = b$ 2. $\frac{b^x}{b^y} = b^{x-y}$ 6. $(ab)^x = a^x b^x$ 3. $(b^x)^y = b^{xy}$ 7. $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$ 4. $b^0 = 1$ Laws of Logarithms If *m* and *n* are positive numbers and b > 0, $b \neq 1$, then 1. $\underbrace{\log_b(mn)}_{\log(a \text{ product})} = \underbrace{\log_b(m) + \log_b(n)}_{\text{sum of } \log s}$ Log of a product is the sum of logs 2. $\underbrace{\log_b\left(\frac{m}{n}\right)}_{\text{log(a quotient)}} = \underbrace{\log_b(m) - \log_b(n)}_{\text{difference of } \log s}$ log of a quotient is difference of logs 3. $\log_h(m^n) = n \log_h(m)$ log of an exponential is the product of exponent × log of base of the exponential 4. $\log_{h}(1) = 0$ log of one is zero 5. $\log_{h}(b) = 1$ log of the base is one 6. $\log_c(x) = \frac{\log_b(x)}{\log_b(c)}$ Change of base formula

Fun Facts:

Numbers 1-6 of laws of logarithm are consequences of laws of exponents.

• Show "Law of exponent $1 \implies$ Law of Logarithm 1":

(1)
$$\underbrace{mn = b^{\log_b(mn)}}_{\text{By Inverse Property}}$$

(2)
$$\underbrace{mn = b^{\log_b(m)} b^{\log_b(n)}}_{\text{By Inverse Property on Each Factor}}$$

(3)
$$\underbrace{mn = b^{\log_b(m)+\log_b(n)}}_{\text{By Inverse Property on Each Factor}}$$

By Exponential Property 1

- (4) By (1) and (3): $b^{\log_b(mn)} = b^{\log_b(m) + \log_b(n)}$. That is, $\log_b(mn) = \log_b(m) + \log_b(n)$.
- To **combine** two or more logs, make sure that the coefficients become exponents inside the log, then use the log of sum and difference law. We combine to solve equations.
- To expand a log, use the law of sum and differences first, and then use the law of exponents and simplify using inverse function property. We expand to evaluate and in future calculus techniques.
- You will see applications of combining or expanding in the future sections.

1. For
$$a > 0, b > 0, c > 0$$
, $(81a^{-4}b^8c^4)^{\frac{1}{4}} =$
(A) $3b^2$ (B) $\frac{b^2c}{3a}$ (C) $\frac{3b^2c}{a}$ (D) $\frac{9b^2c}{a}$ (E) $\frac{b^2c}{81a}$

2.
$$\sqrt[5]{3\sqrt[4]{3}} =$$

(A) 3	(B) $\sqrt[20]{3}$	(C) $\sqrt[20]{3^4}$	(D) $\sqrt[20]{3^5}$	(E) $\sqrt[20]{3^9}$
(1) 0	(D)	(0) $\sqrt{3}$	(D) $\sqrt{3}$	

3. $\ln(\sqrt{x^2 + 16}) - \ln(\sqrt{x})$ is equivalent to

(A)
$$\frac{1}{2}\ln\left(\frac{x^2+16}{x}\right)$$
 (B) $\frac{\ln(\sqrt{x^2+16})}{\ln(\sqrt{x})}$ (C) $\ln\left(\frac{x+4}{\sqrt{x}}\right)$ (D) $\ln(4)$ (E) $\ln\left(\sqrt{x^2+16}-\sqrt{x}\right)$

4. When **expanded** using the laws of logarithms, $\ln\left(\frac{a}{b^2\sqrt{c}}\right) =$ (A) $\ln a - 2\ln b - \frac{1}{2}\ln c$ (B) $a - 2b - \frac{1}{2}c$ (C) $\ln(a - 2b + \frac{1}{2}c)$ (D) $\ln a - 2\ln b + \frac{1}{2}\ln c$

5. Simplify: (A) $e^{7\ln x}$ (B) $\ln(e^{t^2})$

6. Simplify the following expressions.

(A)
$$\frac{2^{y+1}e^{3x}}{e^{x}2^{y}}$$
 (B) $(2^{2x}3^{3x}2^{2x-1})^{3}$

7. Expand the following expressions.

(A)
$$\ln\left((e^{3x}e^{x+1})^{1/3}\right)$$

(B)
$$\ln\left(\frac{\sqrt{e^x}\sqrt{2^x}}{2e}\right)$$

8. Use the laws of logarithms to **combine** each expression into single logarithm.

(A) $\frac{1}{2}\ln(x) + 8\ln(y) - 5\ln(z)$ (B) $2\ln(x+3) - \frac{1}{3}\ln(x^2+x) + \ln 8$ (C) $8\ln(x+6) - \frac{1}{2}\ln(x+8) + 3\ln(x)$.

9. Use the laws of logarithms to **expand** and simplify the expression. $log(x(x^5 + 5)^{-1/2}) =$

10. Factor and simplify the following function as much as possible. Then find the **zeros** and the **domain** of the function.

$$f(x) = 30(x+3)^2(x-2)^{-\frac{2}{3}} - 6(x+3)(x-2)^{\frac{1}{3}}$$

A few Videos:

- 1. https://youtu.be/n6Nvm8j6P6A
- 2. https://youtu.be/FPVvZwZnuPw